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Summary of Computing Team’s Activities—Fall 2007 
Siddharth Gauba, Toni Ivanov, Edwin Lai, Gary Soedarsono, Tanya Gupta 

 

1 OVERVIEW 

The computing team accomplished the design and 
implementation of a sensor processing and 
navigation control system. This system receives 
inputs from the various installed sensors and provide 
an output to the motor controller in order to control 
direction. This system was customized in order to 
handle both the autonomous and navigation 
challenges of the IGVC competition. In sum, the 
following two diagrams sum up the high-level 
software design. 

2 IMAGE PROCESSING 

The camera was selected to function in outdoor 
environment under variable light conditions (bright 
or dim sunlight). A lens with wider view angle (81°) 
was chosen so that objects in the periphery, such as 
obstacles and lanes, can be registered for better 
navigation. A fish eye lens (107°) wasn’t worthwhile 
since it doesn’t work well in low light conditions and 
results in a larger distortion. Since two cameras were 
used for stereo vision the effective peripheral view 
included wider area. The camera selected was the 
Fire-I camera from Unibrain, a device tried and 
tested by many robots and competitors in the IGVC. 
 

3 LINE AND OBSTACLE DETECTION 

3.1 OVERVIEW 

The goal of this section of the program was to 
facilitate a modular approach to line detection. The 
inputs are a color image, which comes from the 
digital camera. The output is a birds-eye-view binary 
map of the lanes, with which the navigation code 
will then process and couple with other sensory 
input to determine the best path. There are several 
steps involved in the image processing, which are 
outlined in the flow chart in Figure 3.1. The large 
parts include Inverse Perspective Mapping (IPM), 
Edge Detection, and Post Processing, as discussed in 
later sections.  
 

 

 

3.2 CHANNEL SEPARATION AND EDGE 
DETECTION 

The first step is to input an image, after which the 
channels are separated to achieve the appropriate 
color ratios for a given purpose. At the present time, 
this is done heuristically. For the competition, the 
lines are stated to be either yellow or white on top 
of green grass. For testing purposes, a sample image 
of white and yellow lines on a green field was used. 
The best color ratios found for white on green was 
2*Blue – Green. For yellow it was Red – Green – Blue.  
 
Edge detection finds lines where there is high 
contrast – an abrupt change from dark to light. 
There are several different edge detection 
techniques that can be applied such as Sobel, 
Prewitt, Roberts, Laplacian of Gaussian, zero-cross, 
and Canny. The best one was determined was the 
Canny method from a heuristic approach. There are 
several parameters that have to be set including the 
threshold for sensitivity as well as the standard 
deviation of the Gaussian Filter. In our case, edge 
detection can be applied to different color channels 
and then be recombined afterwards. The results of 
both channel separation and edge detection on 
white and yellow lines on green grass can be found 
in Figure 3.2.  
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Figure 3.1: High level view of Image processing 
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3.3 INVERSE PERSPECTIVE MAPPING 

The two previous algorithms for channel separation 
and edge detection work perfectly fine with an 
image taken straight from a camera, however these 
images are not as helpful for navigation purposes 
because they are in a different perspective. This 
section discusses the technique of Inverse 
Perspective Mapping (IPM) to transform a view from 
a picture that is taken head-on into a birds-eye view 
as if taken from above. Essentially, it maps every 
pixel in a 2D perspective view of a 3D object and 
maps those pixels to a 2D planar view.  
 
This transform is obviously dependent upon many 
factors, most importantly the aperture angle of the 
camera, the height of the camera above the floor, 
and the angle of attack of the camera vs the horizon. 
Both the aperture angle and the angle of attack 
determine the horizon below which the image is 
cropped. All three factors combined determine the 
skew of the IPM. These parameters must be 
recalibrated after installing a new camera or 
modifying the position of the camera on the robot.  
 
In this example, the IPM transformation is done after 
the correct color channels have been acquired. 
Several images from the webcam were used to 
configure the IPM properly. Figure 3 & 4 show 
several examples of IPM at work on our test setup.  

 

 

3.4 POST PROCESSING 

After the recombination of the binary edges, there is 
an option for post processing. It would be nice to 
have a single solid line instead of the edges of a line. 
There are several techniques that can be used to 
achieve this goal, but the one that was chosen 
involves finding the distances for all pixels in the 
image from a non-zero pixel (in this case a line). That 
is, pixels that are very close to a line would have 
lower values, and pixels that are further away would 
have higher values. A threshold is then set and pixels 
below this threshold would be set to a binary 1. In 
other words, pixles that are close to the line are 1, 
and pixels further away from the line are 0. This in 
effect produces a solid bar surrounding any line. An 
example of this continues from the example in 
Figure 2 which can be found in Figure 3.  
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Figure 3.2: IPM Transformation 

Figure 3.3: Post Processing 
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4 NAVIGATION ALGORITHM 

4.1 WEDGEBUG ALGORITHM 

The algorithm used by Rocky7 Mars Rover at 
the Jet Propulsion Laboratory offers a more cost 
efficient solution. The idea is to have the robot scan 
a sector of area centered in the direction of the goal 
for any obstacles. If there is an obstacle in the sector, 
the robot scans the sectors besides the previous 
sector until it finds a sector that has no obstacles. 
Once it finds a clear sector, it chooses this sector as 
the next direction to move. This is illustrated in 
Figure .  
 

 
Figure 4.1: Sectors Checked by the Wedgebug 

Algorithm 
 

The yellow line indicates the direction that 
the robot (the black circle) wants to go to. First, the 
robot checks if there are any obstacles in the red 
sector. If there are, it moves in the direction of the 
yellow arrow. Otherwise, the robot checks the blue 
sector for obstacles. If one of the sectors has no 
obstacles, the robot moves in the direction that the 
sector is centered at. Otherwise, the robot considers 
an even larger sector. This process repeats until a 
free sector is discovered. 

To make the result more accurate, smaller 
sector angles are used. Since the length of the 
sector’s arc can be less than the width of the robot, 
we look for multiple consecutive free sectors instead. 
The number of consecutive free sectors should be 
enough to provide the robot with a clearance to go 
through the sector. 

This algorithm solves the computation 
problem faced by the D* algorithm and works for 
both the navigation and autonomous challenge. In 
the navigation challenge, the goal direction of the 
robot is obvious: it is the next checkpoint that the 
robot must go to. In the autonomous challenge, the 
goal direction is set to be straight ahead. This allows 
the robot to travel in a line as straight as possible, 

thus reaching the goal as fast as possible. However, 
the algorithm will perform poorly in U turns, as it will 
lead the robot to follow the outer curve of the U. 
Although this can be problematic if the outer curve is 
much longer than the inner curve, we will assume 
that such cases are rare. 

4.2 DETERMINING GOAL SEQUENCE 

IGVC’s navigation challenge requires the 
competing robots to be able to visit around eight 
checkpoints in some order. To be able to finish the 
challenge as fast as possible, we must first 
determine the ordering of the goals to be visited. 
Since the obstacles in the course are unknown at the 
start, the sequence calculation is done while 
assuming that there is no obstacles in the course.  

A possible algorithm to determine the 
shortest path is to calculate the total path for every 
permutation of goals and find the permutation with 
the minimum total path. While this may work with 
small number of goals, calculating for eight goals 
turns out to be computationally expensive (about 15 
seconds). So, we use a nearest neighbour 
approximation with occasional adjustment. 

The adjustment works as follows: When the 
robot is trying to go to goal A, it may move away 
from A when rerouting because of obstacles. When 
this happens, it checks if it is moving closer to some 
other goal B. If it is, and its distance is within a 
certain threshold, the robot switches its destination 
goal to B instead. The robot will resume moving 
towards A after reaching B. 

4.3 DETERMINING POSITION AND ORIENTATION 

We use different kinds of sensors to 
determine the orientation and position of the robot 
to make sure that the inaccuracy of one instrument 
does not affect the resulting calculation much. The 
orientation is defined to be the robot’s bearing from 
the north direction, while the position is the 
(longitude, latitude) coordinate of the robot. To 
determine the robot’s orientation, compass and 
IMU’s yaw gyro reading are used. The IMU, along 
with the GPS and wheel velocity readings, are used 
to determine the robot’s position. 

To calculate the orientation, the IMU and the 
compass are used to calculate the robot’s 
orientation. Calculating the orientation using the 
compass just involves reading the compass directly. 
To calculate using the IMU, it is assumed that the 
rotation rate of the robot since the last call to the 
update function is constant. Integrating the rotation 
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rate and adding it to the previous orientation gives 
the orientation of the robot.  

The orientation of the robot is the weighted 
average of the two different orientations. To make 
sure that anomaly readings do not cause a large 
error in the calculation, an upper bound on the 
difference of the orientations is used. Let DIMU be the 
orientation calculated using the IMU, and DCom be 
orientation calculated using the compass. If DIMU 

differs from DCom by more than some threshold value 
T, DIMU is set to DCom + T.  

Calculating the position of the robot uses the 
same steps as calculating the orientation. Difference 
in positions is calculated by calculating the Euclidean 
distance between two positions. However, since 
there are three values to consider, there is an 
additional step to take. Before adjusting the 
positions whose difference is greater than a 
threshold level, the algorithm determines if any of 
the three positions is an outlier. This is done by 
checking if any of them has differs from another by a 
value exceeding some threshold. If all three 
differences exceed the threshold, none of the 
positions is an outlier. If two of the differences 
exceed the threshold, the position common to both 
differences is considered the outlier and is removed. 
If one of the differences exceeds the threshold, the 
position that is further away from the position 
uninvolved in the difference is removed. 

4.4 USING IMU TO CALCULATE ABSOLUTE 
POSITION 

A problem with calculating the position using 
the IMU and wheel velocities is that we need to take 
into account the change in orientation through time. 
This is needed when calculating the robot’s position 
using the IMU, since its reading is relative to the 
robot, while we need the absolute position. This 
means that if the robot continuously accelerates 
leftwards, it may not necessarily move leftwards. 
Instead, it can be traveling in a circle. To consider 
this, the orientation of the robot is assumed linear in 
time from the last call to this update function. So, 
the orientation can be expressed as a linear equation 
over time. Using transformation matrix, the 
acceleration of the robot through time in terms of 
(longitude, latitude) can be obtained. The position of 
the robot can be obtained by integrating this 
equation twice. 

4.5 USING WHEEL VELOCITY TO CALCULATE 
ABSOLUTE POSITION 

To calculate the position using the wheel 
velocities, we take the average velocities of the left 
and right wheels. The change in position of the robot 
can be calculated by using the formula in Equation 1, 
where x and y are the coordinates of the robot, w is 
the separation distance between the left and right 
wheels, vR and vL are the right and left wheel 
velocities respectively, and θ0 is the initial 
orientation of the robot. After applying this equation, 
the new position of the robot is converted to 
(longitude, latitude). 
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Equation 1: Calculating Position Using Wheel 
Velocities
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4.6 DETERMINING PARAMETERS 

The function uses six adjustable parameters, 
as outlined in Table 1. WIMU is the weight for the 
position calculated using the IMU, WGPS is the 
weighting for position calculated using the GPS, and 
WCOM is the weighting for orientation from compass 
reading. TPOS is the threshold for difference in 
positions, and TANG is the threshold for difference in 
orientations. OUTL is the threshold for determining 
outliers for the positions. 

 

Name Range Tested Optimal Value 

WIMU 0:0.1:1 0.5 

WGPS 0:0.1:(1-WIMU) 0.1 

WCOM 0:0.1:1 1 

TPOS 0:W/5:W 0 

TANG 0:1:5 4 

OUTL 0:W/5:W 0.12 

Table 1: Parameters to Determine Position and 
Orientation 

 
For every test value of the parameter, we 

simulate the robot on a course, and check the 
orientation and position of the robot at the end of 
the course. The course is outlined in Table 2. The 
robot starts at location (0, 0) and oriented at 90°. At 
the end of every period, we calculate the readings of 
the GPS, IMU, compass, and wheel velocities by 
hand, and feed it to the update function after adding 
some errors. The errors used are outlined in Table 3. 
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To find the optimal parameters, after the 
experiment is run, we find a set of parameters that 
gives the most accurate readings for position and 
orientation. The optimal parameter is obtained by 
selecting the parameters that gives the most 
accurate position and orientation. The optimal 
parameters are outlined in Table 1, with 9.0 cm error 
in position, and 0.32° error of orientation. 

 
 

Period (s) Reading 

0 - 1 Accelerate by 1 ms
-2

 

1 - 2 Constant velocity at 1 ms
-1 

2 - 3 Turn right by 90° at 1ms
-1 

3 - 4 Constant velocity at 1 ms
-1

 

4 - 5 Decelerate by 1ms
-2 

5 - 6 Zero point rotation to the right by 180°  

6 - 7 Accelerate by 1 ms
-2

 

7 - 8 Constant velocity at 1 ms
-1

 

8 - 9 Turn left by 90° at 1ms
-1

 

9 - 10 Constant velocity at 1 ms
-1

 

10 - 11 Decelerate by 1ms
-2

 

11 - 12 Zero point rotation to the left by 180°  

Table 2: Course Used to Determine Parameters 
 

Device Error 

IMU (Acceleration) 0.0196 ms
-2 

IMU (Gyro) 100 / 3600 °s
-1 

GPS 2 m 

Compass 1° 

Wheel velocity 0.2ms
-1

  

Table 3: Devices and the Errors Used in the 
Experiment 

5 CONVERTING FROM GRID MAP TO 
RADIAL MAP 

The map acquired from the image processing 
step is grid based. However, to make the map usable 
by the Wedgebug algorithm, it needs to be 
converted to radial coordinate map. This map 
contains the distance, in meters, to the nearest 
obstacle in a sector. The sector is specified by its 
angle from the direction that the robot is facing.  

To do this, the algorithm assumes that the 
robot is at the bottom center of the grid map. To 
find the closest obstacle in a sector with direction θ, 
and sector angle of Δ, we sample the maximum 
distance travelable at angles equally spaced 
between θ and θ + Δ. For each sector, the minimum 
of such distances is taken to be the distance to the 
closest object in the sector.  

 

 
Figure 5.1: Determining the Maximum Distance 

Travelable 
 
To find the maximum distance travelable at 

an angle θ, we draw a line from the position of the 
robot in the direction of θ, as illustrated in Figure  
(the robot is at the bottom right corner of the grid). 
First, check if the bottom right grid cell is an obstacle. 
If it is not, extend the line as shown in part B. The 
next grid cell to be checked is the top right cell. 
Again, if it is not an obstacle, the line is extended, as 
shown in C. This process continues until the cell 
checked is an obstacle or if the line has reached the 
edge of the map. Should the line reach the edge of 
the map, the maximum travelable distance is set to 
some value that is very large compared to the size of 
the map. This is done to make sure that the 
Wedgebug algorithm does not treat the edge of the 
map as an obstacle. 

To make the process more efficient, when we 
are determining maximum travelable distance for 
angle θ in sector φ, the algorithm stops as soon as 
the length of line exceeds the maximum travelable 
distance for some other angle θ’. 

 

6 FUTURE GOALS 

Given the progress achieved this semester, the 

thrust in the next semester would be to prepare the 

robot for the IGVC 2008 competition. This is to be 

accomplished by sensor integration, testing, and 

timing optimization.  

6.1 TESTING 

A comprehensive testing plan for the robot is to be 

developed. Testing will be accomplished using 

resources such as the simulator and mock setups 

mimicking the competition environment. A 

monitoring console would be implemented  
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6.2 SENSOR AND HARDWARE  INTEGRATION 

All software will be migrated to a new, more 

powerful computing platform that meets the 

resource needs of the competition. New hardware 

such as the LIDAR, and sensors such as cameras, 

IMU, and SONAR are to be integrated into the 

platform to ensure optimal usage. 

6.3 OPTIMIZATION 

After successful algorithm validation via thorough 

testing, emphasis would be placed on code 

optimization to ensure rapid image and sensor 

analysis in order to ensure fast motion command 

generation. High algorithm throughput is required to 

ensure free-flowing robot operation.  
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