
 1

Summary of Computing Team’s Activities—Fall 2007
Siddharth Gauba, Toni Ivanov, Edwin Lai, Gary Soedarsono, Tanya Gupta

1 OVERVIEW

The computing team accomplished the design and
implementation of a sensor processing and
navigation control system. This system receives
inputs from the various installed sensors and provide
an output to the motor controller in order to control
direction. This system was customized in order to
handle both the autonomous and navigation
challenges of the IGVC competition. In sum, the
following two diagrams sum up the high-level
software design.

2 IMAGE PROCESSING

The camera was selected to function in outdoor
environment under variable light conditions (bright
or dim sunlight). A lens with wider view angle (81°)
was chosen so that objects in the periphery, such as
obstacles and lanes, can be registered for better
navigation. A fish eye lens (107°) wasn’t worthwhile
since it doesn’t work well in low light conditions and
results in a larger distortion. Since two cameras were
used for stereo vision the effective peripheral view
included wider area. The camera selected was the
Fire-I camera from Unibrain, a device tried and
tested by many robots and competitors in the IGVC.

3 LINE AND OBSTACLE DETECTION

3.1 OVERVIEW

The goal of this section of the program was to
facilitate a modular approach to line detection. The
inputs are a color image, which comes from the
digital camera. The output is a birds-eye-view binary
map of the lanes, with which the navigation code
will then process and couple with other sensory
input to determine the best path. There are several
steps involved in the image processing, which are
outlined in the flow chart in Figure 3.1. The large
parts include Inverse Perspective Mapping (IPM),
Edge Detection, and Post Processing, as discussed in
later sections.

3.2 CHANNEL SEPARATION AND EDGE
DETECTION

The first step is to input an image, after which the
channels are separated to achieve the appropriate
color ratios for a given purpose. At the present time,
this is done heuristically. For the competition, the
lines are stated to be either yellow or white on top
of green grass. For testing purposes, a sample image
of white and yellow lines on a green field was used.
The best color ratios found for white on green was
2*Blue – Green. For yellow it was Red – Green – Blue.

Edge detection finds lines where there is high
contrast – an abrupt change from dark to light.
There are several different edge detection
techniques that can be applied such as Sobel,
Prewitt, Roberts, Laplacian of Gaussian, zero-cross,
and Canny. The best one was determined was the
Canny method from a heuristic approach. There are
several parameters that have to be set including the
threshold for sensitivity as well as the standard
deviation of the Gaussian Filter. In our case, edge
detection can be applied to different color channels
and then be recombined afterwards. The results of
both channel separation and edge detection on
white and yellow lines on green grass can be found
in Figure 3.2.

Input Image Channel Separation

Edge Detection Binarization Channel
Recombination

Post Processing Binary Map

Inverse Perspective
Mapping

Figure 3.1: High level view of Image processing

 2

3.3 INVERSE PERSPECTIVE MAPPING

The two previous algorithms for channel separation
and edge detection work perfectly fine with an
image taken straight from a camera, however these
images are not as helpful for navigation purposes
because they are in a different perspective. This
section discusses the technique of Inverse
Perspective Mapping (IPM) to transform a view from
a picture that is taken head-on into a birds-eye view
as if taken from above. Essentially, it maps every
pixel in a 2D perspective view of a 3D object and
maps those pixels to a 2D planar view.

This transform is obviously dependent upon many
factors, most importantly the aperture angle of the
camera, the height of the camera above the floor,
and the angle of attack of the camera vs the horizon.
Both the aperture angle and the angle of attack
determine the horizon below which the image is
cropped. All three factors combined determine the
skew of the IPM. These parameters must be
recalibrated after installing a new camera or
modifying the position of the camera on the robot.

In this example, the IPM transformation is done after
the correct color channels have been acquired.
Several images from the webcam were used to
configure the IPM properly. Figure 3 & 4 show
several examples of IPM at work on our test setup.

3.4 POST PROCESSING

After the recombination of the binary edges, there is
an option for post processing. It would be nice to
have a single solid line instead of the edges of a line.
There are several techniques that can be used to
achieve this goal, but the one that was chosen
involves finding the distances for all pixels in the
image from a non-zero pixel (in this case a line). That
is, pixels that are very close to a line would have
lower values, and pixels that are further away would
have higher values. A threshold is then set and pixels
below this threshold would be set to a binary 1. In
other words, pixles that are close to the line are 1,
and pixels further away from the line are 0. This in
effect produces a solid bar surrounding any line. An
example of this continues from the example in
Figure 2 which can be found in Figure 3.

Image Input

Channel Separation Edge Detection &
Binarization

Channel
Recombination

Edge Detection
Recombination

Threshold
Filter

Distance
transform

Image
Input

Horizon
Cropped
Channel

Separated

IPM
applied

Edge
Detection

Figure 3.2: IPM Transformation

Figure 3.3: Post Processing

 3

4 NAVIGATION ALGORITHM

4.1 WEDGEBUG ALGORITHM

The algorithm used by Rocky7 Mars Rover at
the Jet Propulsion Laboratory offers a more cost
efficient solution. The idea is to have the robot scan
a sector of area centered in the direction of the goal
for any obstacles. If there is an obstacle in the sector,
the robot scans the sectors besides the previous
sector until it finds a sector that has no obstacles.
Once it finds a clear sector, it chooses this sector as
the next direction to move. This is illustrated in
Figure .

Figure 4.1: Sectors Checked by the Wedgebug

Algorithm

The yellow line indicates the direction that
the robot (the black circle) wants to go to. First, the
robot checks if there are any obstacles in the red
sector. If there are, it moves in the direction of the
yellow arrow. Otherwise, the robot checks the blue
sector for obstacles. If one of the sectors has no
obstacles, the robot moves in the direction that the
sector is centered at. Otherwise, the robot considers
an even larger sector. This process repeats until a
free sector is discovered.

To make the result more accurate, smaller
sector angles are used. Since the length of the
sector’s arc can be less than the width of the robot,
we look for multiple consecutive free sectors instead.
The number of consecutive free sectors should be
enough to provide the robot with a clearance to go
through the sector.

This algorithm solves the computation
problem faced by the D* algorithm and works for
both the navigation and autonomous challenge. In
the navigation challenge, the goal direction of the
robot is obvious: it is the next checkpoint that the
robot must go to. In the autonomous challenge, the
goal direction is set to be straight ahead. This allows
the robot to travel in a line as straight as possible,

thus reaching the goal as fast as possible. However,
the algorithm will perform poorly in U turns, as it will
lead the robot to follow the outer curve of the U.
Although this can be problematic if the outer curve is
much longer than the inner curve, we will assume
that such cases are rare.

4.2 DETERMINING GOAL SEQUENCE

IGVC’s navigation challenge requires the
competing robots to be able to visit around eight
checkpoints in some order. To be able to finish the
challenge as fast as possible, we must first
determine the ordering of the goals to be visited.
Since the obstacles in the course are unknown at the
start, the sequence calculation is done while
assuming that there is no obstacles in the course.

A possible algorithm to determine the
shortest path is to calculate the total path for every
permutation of goals and find the permutation with
the minimum total path. While this may work with
small number of goals, calculating for eight goals
turns out to be computationally expensive (about 15
seconds). So, we use a nearest neighbour
approximation with occasional adjustment.

The adjustment works as follows: When the
robot is trying to go to goal A, it may move away
from A when rerouting because of obstacles. When
this happens, it checks if it is moving closer to some
other goal B. If it is, and its distance is within a
certain threshold, the robot switches its destination
goal to B instead. The robot will resume moving
towards A after reaching B.

4.3 DETERMINING POSITION AND ORIENTATION

We use different kinds of sensors to
determine the orientation and position of the robot
to make sure that the inaccuracy of one instrument
does not affect the resulting calculation much. The
orientation is defined to be the robot’s bearing from
the north direction, while the position is the
(longitude, latitude) coordinate of the robot. To
determine the robot’s orientation, compass and
IMU’s yaw gyro reading are used. The IMU, along
with the GPS and wheel velocity readings, are used
to determine the robot’s position.

To calculate the orientation, the IMU and the
compass are used to calculate the robot’s
orientation. Calculating the orientation using the
compass just involves reading the compass directly.
To calculate using the IMU, it is assumed that the
rotation rate of the robot since the last call to the
update function is constant. Integrating the rotation

 4

rate and adding it to the previous orientation gives
the orientation of the robot.

The orientation of the robot is the weighted
average of the two different orientations. To make
sure that anomaly readings do not cause a large
error in the calculation, an upper bound on the
difference of the orientations is used. Let DIMU be the
orientation calculated using the IMU, and DCom be
orientation calculated using the compass. If DIMU

differs from DCom by more than some threshold value
T, DIMU is set to DCom + T.

Calculating the position of the robot uses the
same steps as calculating the orientation. Difference
in positions is calculated by calculating the Euclidean
distance between two positions. However, since
there are three values to consider, there is an
additional step to take. Before adjusting the
positions whose difference is greater than a
threshold level, the algorithm determines if any of
the three positions is an outlier. This is done by
checking if any of them has differs from another by a
value exceeding some threshold. If all three
differences exceed the threshold, none of the
positions is an outlier. If two of the differences
exceed the threshold, the position common to both
differences is considered the outlier and is removed.
If one of the differences exceeds the threshold, the
position that is further away from the position
uninvolved in the difference is removed.

4.4 USING IMU TO CALCULATE ABSOLUTE
POSITION

A problem with calculating the position using
the IMU and wheel velocities is that we need to take
into account the change in orientation through time.
This is needed when calculating the robot’s position
using the IMU, since its reading is relative to the
robot, while we need the absolute position. This
means that if the robot continuously accelerates
leftwards, it may not necessarily move leftwards.
Instead, it can be traveling in a circle. To consider
this, the orientation of the robot is assumed linear in
time from the last call to this update function. So,
the orientation can be expressed as a linear equation
over time. Using transformation matrix, the
acceleration of the robot through time in terms of
(longitude, latitude) can be obtained. The position of
the robot can be obtained by integrating this
equation twice.

4.5 USING WHEEL VELOCITY TO CALCULATE
ABSOLUTE POSITION

To calculate the position using the wheel
velocities, we take the average velocities of the left
and right wheels. The change in position of the robot
can be calculated by using the formula in Equation 1,
where x and y are the coordinates of the robot, w is
the separation distance between the left and right
wheels, vR and vL are the right and left wheel
velocities respectively, and θ0 is the initial
orientation of the robot. After applying this equation,
the new position of the robot is converted to
(longitude, latitude).

0 0 0

0 0 0

sin sin
2

cos cos
2

R L

R L

R L

R L

R L

R L

w v v
x t x v v t w

v v

w v v
y t y v v t w

v v

Equation 1: Calculating Position Using Wheel
Velocities

1

4.6 DETERMINING PARAMETERS

The function uses six adjustable parameters,
as outlined in Table 1. WIMU is the weight for the
position calculated using the IMU, WGPS is the
weighting for position calculated using the GPS, and
WCOM is the weighting for orientation from compass
reading. TPOS is the threshold for difference in
positions, and TANG is the threshold for difference in
orientations. OUTL is the threshold for determining
outliers for the positions.

Name Range Tested Optimal Value

WIMU 0:0.1:1 0.5

WGPS 0:0.1:(1-WIMU) 0.1

WCOM 0:0.1:1 1

TPOS 0:W/5:W 0

TANG 0:1:5 4

OUTL 0:W/5:W 0.12

Table 1: Parameters to Determine Position and
Orientation

For every test value of the parameter, we

simulate the robot on a course, and check the
orientation and position of the robot at the end of
the course. The course is outlined in Table 2. The
robot starts at location (0, 0) and oriented at 90°. At
the end of every period, we calculate the readings of
the GPS, IMU, compass, and wheel velocities by
hand, and feed it to the update function after adding
some errors. The errors used are outlined in Table 3.

 5

To find the optimal parameters, after the
experiment is run, we find a set of parameters that
gives the most accurate readings for position and
orientation. The optimal parameter is obtained by
selecting the parameters that gives the most
accurate position and orientation. The optimal
parameters are outlined in Table 1, with 9.0 cm error
in position, and 0.32° error of orientation.

Period (s) Reading

0 - 1 Accelerate by 1 ms
-2

1 - 2 Constant velocity at 1 ms
-1

2 - 3 Turn right by 90° at 1ms
-1

3 - 4 Constant velocity at 1 ms
-1

4 - 5 Decelerate by 1ms
-2

5 - 6 Zero point rotation to the right by 180°

6 - 7 Accelerate by 1 ms
-2

7 - 8 Constant velocity at 1 ms
-1

8 - 9 Turn left by 90° at 1ms
-1

9 - 10 Constant velocity at 1 ms
-1

10 - 11 Decelerate by 1ms
-2

11 - 12 Zero point rotation to the left by 180°

Table 2: Course Used to Determine Parameters

Device Error

IMU (Acceleration) 0.0196 ms
-2

IMU (Gyro) 100 / 3600 °s
-1

GPS 2 m

Compass 1°

Wheel velocity 0.2ms
-1

Table 3: Devices and the Errors Used in the
Experiment

5 CONVERTING FROM GRID MAP TO
RADIAL MAP

The map acquired from the image processing
step is grid based. However, to make the map usable
by the Wedgebug algorithm, it needs to be
converted to radial coordinate map. This map
contains the distance, in meters, to the nearest
obstacle in a sector. The sector is specified by its
angle from the direction that the robot is facing.

To do this, the algorithm assumes that the
robot is at the bottom center of the grid map. To
find the closest obstacle in a sector with direction θ,
and sector angle of Δ, we sample the maximum
distance travelable at angles equally spaced
between θ and θ + Δ. For each sector, the minimum
of such distances is taken to be the distance to the
closest object in the sector.

Figure 5.1: Determining the Maximum Distance

Travelable

To find the maximum distance travelable at

an angle θ, we draw a line from the position of the
robot in the direction of θ, as illustrated in Figure
(the robot is at the bottom right corner of the grid).
First, check if the bottom right grid cell is an obstacle.
If it is not, extend the line as shown in part B. The
next grid cell to be checked is the top right cell.
Again, if it is not an obstacle, the line is extended, as
shown in C. This process continues until the cell
checked is an obstacle or if the line has reached the
edge of the map. Should the line reach the edge of
the map, the maximum travelable distance is set to
some value that is very large compared to the size of
the map. This is done to make sure that the
Wedgebug algorithm does not treat the edge of the
map as an obstacle.

To make the process more efficient, when we
are determining maximum travelable distance for
angle θ in sector φ, the algorithm stops as soon as
the length of line exceeds the maximum travelable
distance for some other angle θ’.

6 FUTURE GOALS

Given the progress achieved this semester, the

thrust in the next semester would be to prepare the

robot for the IGVC 2008 competition. This is to be

accomplished by sensor integration, testing, and

timing optimization.

6.1 TESTING

A comprehensive testing plan for the robot is to be

developed. Testing will be accomplished using

resources such as the simulator and mock setups

mimicking the competition environment. A

monitoring console would be implemented

 6

6.2 SENSOR AND HARDWARE INTEGRATION

All software will be migrated to a new, more

powerful computing platform that meets the

resource needs of the competition. New hardware

such as the LIDAR, and sensors such as cameras,

IMU, and SONAR are to be integrated into the

platform to ensure optimal usage.

6.3 OPTIMIZATION

After successful algorithm validation via thorough

testing, emphasis would be placed on code

optimization to ensure rapid image and sensor

analysis in order to ensure fast motion command

generation. High algorithm throughput is required to

ensure free-flowing robot operation.

Lucas, G.W. (2000). A Tutorial and Elementary
Trajectory Model for the Differential Steering System
of Robot Wheel Actuators/ Retrieved November 28,
2007, from http://rossum.sourceforge.net/papers/
DiffSteer/DiffSteer.html

Muad, A.M., Hussain, A., Samad, S.A., Mustaffa,
M.M., Majlis, B.Y., “Implementation of inverse
perspective mapping algorithm for the development
of an automatic lane tracking system”, TENCON 2004.
2004 IEEE Region 10 Conference, Nov. 2004. Vol. A.
pp. 207-210.

M. Bertozzi, A. Broggi, A. Fascioli, “Stereo Inverse
Perspective Mapping: Theory and Applications”,
Image and Vision Computing Journal, 1998(16): 585--
590, 1998.

E. Johnson, R. Hamburger, “CS5320/6320 Computer
Vision Class Project”, Weekly Report - University of
Utah, March 12, 2007.

